В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов. Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным.
Квантовая — значит дискретная
В классической физике Ньютона, Галилея и даже Эйнштейна было одно замечательное свойство — все физические величины можно было не только измерить, но и с любой степенью точности вычислить их последующие изменения во времени. Поведение любой, сколь угодно сложной, системы и движение тел любой массы и размера были в принципе предсказуемы.
Квантовая механика предложила принципиально иную систему законов, управляющих миром. Первые изученные ею микрообъекты — атомы, электроны и фотоны, категорически не желавшие вести себя как классические, заставили физиков кардинально изменить методы описания природных явлений.
К началу XX века в классическом естествознании возникли большие трудности с объяснением целого ряда явлений, начиная от дискретного характера оптических спектров и устройства атома и заканчивая тепловым излучением тел и внешним фотоэффектом. Понимание того, что микромир живет по особым законам, формировалось постепенно и происходило с большим трудом, поскольку очень уж необычными были эти законы.
Классическая физика оперировала величинами, которые могли изменяться равномерно и непрерывно, принимая любые сколь угодно близкие значения. Попытка такого классического подхода к миру атомов и элементарных частиц потерпела неудачу, и ученым пришлось построить новую — квантовую механику, адекватно описывающую особый мир микроскопических частиц и изменений энергий. В новой теории много необычного, и одна из особенностей квантового мира состоит в том, что его характеристики могут изменяться лишь дискретным способом, принимая ряд фиксированных значений.
Квантовые порции
Одной из первых проблем, для решения которой понадобилось введение кванта энергии, было рассмотрение сосуществования частиц и полей и построение теории теплового излучения. Это излучение можно почувствовать не только под ярким летним солнцем, но и поднеся руку к обычной лампочке или горячему утюгу. Однако попытки объяснить такие обыденные явления в рамках классической теории оказались несостоятельными.
В 1900 году Джон Рэлей и Джеймс Джинс, используя классическую теорию, рассмотрели нагретое тело, в котором электромагнитное поле (волны) находилось в тепловом равновесии с частицами. Оказалось, что в этом случае поле забирает у частиц всю их энергию. Тем самым классическая теория приводила к бессмысленному результату: нагретое тело, непрерывно теряя энергию из-за излучения волн, должно охладиться до абсолютного нуля. Этот физически абсурдный результат получил название «ультрафиолетовой катастрофы». В действительности ничего подобного, естественно, не происходит. Наблюдения показали, что на высоких частотах энергия излучения не возрастает бесконечно, а убывает до нуля. Максимальное излучение при фиксированной температуре приходится на определенную частоту или цвет.
Примерами этого могут служить красный цвет раскаленной кочерги (температура около 1 000 К) или желто-белый цвет Солнца (около 6 000 К).
Частный, казалось бы, вопрос об излучении электромагнитных волн нагретыми телами приобрел принципиальное значение. Классическая теория приводила к результатам, резко противоречащим опыту. В 1900 году, чтобы добиться согласования теории с опытом, Максу Планку пришлось отступить от классического подхода лишь в одном пункте. Он использовал гипотезу, согласно которой излучение электромагнитного поля может происходить только отдельными порциями — квантами. Принятая Планком гипотеза противоречила классической физике, однако построенная им теория теплового излучения превосходно согласовывалась с экспериментом.
Эффект комптона
Вещество может не только излучать, но и поглощать электромагнитные волны. Процесс поглощения, исходя из классических представлений, также оказался не совсем понятным. В начале прошлого века уже умели изготавливать электровакуумные лампы и знали, что при освещении катода светом такой лампы происходит испускание электронов. Это явление назвали внешним фотоэффектом. Все попытки описать его на основе классической теории, в которой свет рассматривался как электромагнитная волна, оказались безрезультатными. Не удавалось объяснить основное свойство фотоэффекта — тот факт, что энергия вылетающих электронов определяется только частотой падающего света и не зависит от его интенсивности.
В 1905 году, через 5 лет после опубликования работы Макса Планка, для объяснения фотоэффекта была применена гипотеза квантов. Из того, что свет, как показал Планк, излучается порциями (квантами), еще не следует дискретная (порционная) структура самого света. Альберт Эйнштейн предположил, что дискретность (разделенность на порции) излучения должна проявляться не только при излучении, но и при поглощении и распространении электромагнитных волн.
Под напором экспериментальных фактов ученые были вынуждены ввести представление о свете как о потоке частиц. Однако еще в начале ХIХ века Томас Юнг экспериментально доказал волновую природу света, а в конце XIX века Джеймс Максвелл теоретически обосновал, что свет представляет собой волны, то есть колебания электромагнитного поля. Каким же образом свет может быть одновременно и частицами, и волнами? Ведь и частица, и волна представляются совершенно не похожими друг на друга. Тем не менее одни экспериментальные факты явно указывают на то, что свет — это поток частиц, а другие на то, что свет — это волны. Возникло логическое противоречие: для объяснения одних явлений свет необходимо было описывать как волны, а для объяснения других — как частицы.
Таким образом, выяснилось, что представления о «частице» и «волне» лишь в какой-то степени отражают реальность. Открытие двойственности (дуализма) свойств света в период формирования новой физики имело огромное значение. Именно попытки объяснить этот дуализм и породили современную квантовую теорию.
Окончательное доказательство существования квантов света было получено в 1922 году американским физиком Артуром Комптоном. Его эксперимент показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц — фотона и электрона. Теперь это явление называется эффектом Комптона.
Неустойчивый атом
Про то, что существуют минимальные, далее неделимые, частицы материи, говорили еще древние греки. К концу XIX века уже почти никто из ученых не сомневался в реальности атомов, но было непонятно, как они устроены и из чего состоят. Существовало много разных гипотез, но только в 1911 году, после опытов английского физика Эрнеста Резерфорда по обстрелу атомов золота а-частицами, родилась планетарная модель атома. Согласно этой модели в центре атома, подобно маленькому солнцу, располагалось ядро. Вокруг ядра, сходно планетам, обращались электроны, удерживаемые электромагнитными силами. Планетарная модель позволила объяснить результаты опытов, но оставался непонятным факт существования атома. Согласно классической теории электрон, вращающийся в атоме, должен излучать электромагнитные волны. Излучение сопровождается потерей энергии. Теряя энергию, электрон должен в конце концов упасть на ядро, а атом — прекратить свое существование.
Выход из этого «тупика» был предложен в 1913 году датским физиком Нильсом Бором. В своей модели Бор рассматривал электроны как классические частицы, движущиеся вокруг маленького массивного ядра под влиянием электрического поля. Однако вопреки законам классической физики Бор предположил существование в атоме стационарных (не меняющихся во времени) состояний, каждому из которых соответствует определенная энергия. В стационарных состояниях электрон не излучает. Излучение и поглощение света происходят лишь в том случае, когда атом переходит из одного состояния в другое.
Волновая гипотеза Бройля
Сначала только свету приписывалось такое странное свойство — быть одновременно и волной, и частицей. Вещество же рассматривалось как система обычных точечных частиц. В 1923 году Луи де Бройль выдвинул гипотезу об универсальности дуализма волна—частица. Согласно этому предположению не только фотоны, но и электроны, а также любые другие частицы обладают волновыми свойствами. И это касается как микроскопически малых атомов и молекул, так и любых других окружающих нас макроскопических объектов.
Основным признаком волн является их способность интерферировать, то есть складываться и вычитаться. Другими словами, если вещество обладает волновыми свойствами, то для него должны наблюдаться явления дифракции (огибание волнами встречающихся на пути препятствий) и интерференции (сложения и вычитания волн).
Прямое экспериментальное доказательство того, что электроны могут дифрагировать и интерферировать, было получено в 1927 году в опытах Клинтона Дэвиссона и Лестера Джемера, а также, независимо от них, в экспериментах Джорджа Томсона. В настоящее время экспериментаторы наблюдают интерференцию и других частиц, вплоть до молекул. Так, в 2003 году в Институте экспериментальной физики Венского университета была впервые обнаружена квантовая интерференция органических молекул биологического происхождения C4444H3 0N4, содержащих 44 атома углерода, 30 атомов водорода и 4 атома азота. В связи с этими экспериментами возникает вопрос: возможна ли квантовая интерференция живых существ?
После выдвижения де Бройлем гипотезы об универсальности дуализма волна—частица и экспериментального подтверждения наличия у частиц вещества волновых свойств возникли новые принципиальные проблемы. Стало необходимым совместить волновую природу частиц с привычными представлениями о размещении (локализации) частиц в пространстве.
Предсказуемая пси-функция
Как уже говорилось, квантовые объекты существенно отличаются от классических. Достаточно ярко это отличие видно при прохождении пучка частиц через экран с двумя щелями. Когда на щели налетают классические частицы, то каждая проходит заведомо лишь через какую-то одну щель и на экране четко видны две независимые области попадания пролетевших частиц. Применительно к квантовым объектам положение оказывается иным. Квантовые частицы (например, электроны) одновременно проходят через обе щели, причем этот процесс описывается вероятностными методами. Явление интерференции электронов приводит к тому, что на экране наблюдается картина, характерная для прохождения волн, — с большим количеством максимумов и минимумов интенсивности. Квантовые частицы (каждая из них) как бы «чувствуют» наличие обеих щелей. Происходит не сложение волн различных квантовых частиц, прошедших через разные щели, а интерференция волны каждой из квантовых частиц на обеих щелях.
Для того чтобы рассчитывать такие явления, квантовую частицу стали характеризовать не точными значениями координат и импульсов, а некоторой пси-функцией — эта комплексная волновая функция позволяет описывать свойства частиц и определять вероятности тех или иных событий. Уравнение Шредингера, которому подчиняется эта функция, является линейным дифференциальным уравнением, и в этом плане поведение самой пси-функции вполне вычислимо и предсказуемо в отличие от поведения описываемых ею квантовых объектов.
Комбинации с котом
Одной из основ квантовой механики является так называемый принцип суперпозиции (наложения). Согласно этому принципу если есть несколько состояний, отвечающих различным волновым функциям, то существуют состояния, описываемые линейными комбинациями этих функций.
Рассмотрим умозрительный эксперимент с так называемым «котом Шредингера», проясняющий принцип суперпозиции. Кота помещают в коробку. В ней, кроме кота, находится капсула с ядовитым газом (или бомба), которая может взорваться с 50-процентной вероятностью благодаря радиоактивному распаду атома плутония или случайно залетевшему кванту света. Через некоторое время коробка открывается и выясняется, жив кот или нет. До тех пор пока коробка не открыта (не произведено измерение), кот пребывает в суперпозиции двух состояний: «живой» и «мертвый». Описывая с помощью волновых функций всю систему (коробку), включая кота, Эрвин Шредингер в 1935 году пришел к парадоксальному выводу. Состоял он в том, что наряду с состояниями, отвечающими живому или мертвому коту, согласно квантовой механике, существует и суперпозиция этих состояний. Другими словами, должно существовать состояние, когда кот «ни жив, ни мертв» (или, если хотите, — жив и мертв одновременно). Применительно к окружающим нас объектам такая ситуация выглядит странновато. Однако для элементарных частиц нахождение одновременно в двух, казалось бы, взаимоисключающих состояниях совершенно естественно.
Недавно группа Джонатана Фридмана из Нью-Йоркского университета получила одно из доказательств того, что законам квантовой теории подвластны не только элементарные частицы, но и макроскопические объекты. Ученые показали, что примерно так же, как кот Шредингера, может вести себя электрический ток в сверхпроводящем кольце. Исследователи добились такого состояния сверхпроводящего кольца, при котором ток по нему тек одновременно и по часовой, и против часовой стрелки.
Одним из важнейших понятий квантовой теории поля является представление о вакууме. Физический вакуум не пустое место. Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то происходит его возбуждение и рождение частиц — квантов этого поля.
Эмпирика точных расчетов
Открытие универсальности дуализма волна—частица для всего микромира привело к пониманию того, что противопоставление понятий «частица» и «волна» не совсем оправданно. Квантовые объекты должны описываться более фундаментальными понятиями, а представления о «частице» и «волне» лишь в некоторой степени отражают объективную реальность окружающего нас мира.
Классические частицы движутся по определенным траекториям. Если точно известны координаты и импульсы частицы в начальный момент времени, то можно определить значения координат и импульсов в любой последующий момент времени.
Электрон, протон, нейтрон и другие элементарные частицы принципиально отличаются от таких классических объектов, как, например, дробинка или шарик для пинг-понга. Одно из основных различий заключается в том, что квантовая частица движется не по траектории. При этом неправомерно говорить об одновременных значениях ее координаты и импульса. В этом и состоит принцип неопределенности, установленный Вернером Гейзенбергом в 1927 году. Соотношение неопределенности подчеркивает принципиальное различие в описании состояния системы в классической и квантовой физике. Состояние классической частицы можно описывать с помощью точного задания координат и импульсов. Для квантовой частицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. При этом квантовая механика позволяет установить, какие из физических величин, характеризующих систему, могут иметь одновременно определенные значения, а какие нет.
Диапазон применения квантовой механики удивительно широк. Ей подчиняется огромное число явлений и процессов—деление атомных ядер и образование нейтронных звезд, форма химических соединений и структура спирали ДНК, работа полупроводниковых диодов, транзисторов и лазеров.
Для понимания законов квантового мира нельзя опереться на повседневный опыт. Частицы ведут себя как классические только в том случае, если мы постоянно «подглядываем» за ними, или, говоря более строго, непрерывно измеряем, в каком состоянии они находятся. Но стоит нам «отвернуться» (прекратить наблюдение), как квантовые частицы переходят из вполне определенного состояния сразу в несколько различных состояний. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично — в другой, частично — в третьей и так далее. И это вовсе не означает, что он делится на части — в противном случае какую-нибудь часть электрона можно было бы изолировать и измерить ее заряд или массу. Опыт же показывает, что после измерения электрон всегда оказывается «целым и невредимым» в одной-единственной точке, несмотря на то, что до этого успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называемое суперпозицией квантовых состояний, описывают обычно волновой функцией, введенной в 1926 году немецким физиком Эрвином Шредингером. После измерения положения частицы ее волновая функция как бы стягивается в ту точку, где частица была обнаружена, а затем, после измерения, опять начинает расплываться.
Но вернемся к эксперименту с двумя щелями. Напомним, что квантовая частица проходит одновременно через две щели, и на экране наблюдается интерференционная картина. При этом квантовая механика предсказывает, что при определении (измерении с помощью любого прибора) того, через какую из двух щелей проходит квантовая частица, интерференционная картина разрушается. Впервые осуществить такого рода эксперименты позволили достижения техники лазерного охлаждения атомных пучков и достижения последних лет в квантовой оптике. Так, с помощью монохроматического пучка атомов натрия в Университете города Констанц (Германия) был реализован эксперимент с двумя щелями. Он показал, что попытка определить траекторию атома путем рассеяния фотонов приводит к исчезновению интерференционной картины.
Сквозь стены
Вероятностный характер происходящих в микромире явлений приводит к тому, что иногда может случиться даже то, чего быть не должно с точки зрения классической физики. Рассмотрим движение частицы в узкой области, внутри которой потенциальная энергия имеет некоторое конечное значение. В этом случае говорят, что наличествует потенциальный барьер. Такой потенциальный барьер можно представлять в виде кратера с высокими стенками. Если полная энергия классической частицы меньше высоты потенциального барьера, то движущаяся частица, достигнув его, не сможет преодолеть потенциальный барьер. В квантовой же механике, согласно уравнению Шредингера, волновая функция частицы, находящейся в таких же условиях, существует не только внутри воображаемого кратера, но и в области за барьером. Это означает, что есть вероятность обнаружить частицу вне кратера. Возникает интересное явление — проникновение квантовых частиц сквозь потенциальный барьер (сквозь стенки), называемое туннельным эффектом.
Туннельный эффект позволяет объяснить распад атомных ядер, при котором из ядер вылетают а-частицы атомов гелия). Известно, что прочно удерживается внутри атомного ядра сильным взаимодействием. Вне ядра на а-частицу действуют электрические силы отталкивания. Потенциальная энергия в зависимости от расстояния до центра ядра имеет вид глубокой ямы, похожей на кратер. Внутри этой ямы а-частица имеет энергию, много меньшую, чем высота потенциального барьера. И а-частицам каким-то образом удается выбраться из этой ямы. Объяснение такого проникновения частиц через стенки дает туннельный эффект. В результате среднее время жизни радиоактивного атомного ядра оказывается хотя и очень большим, но конечным. Например, время жизни ядра урана 238 U составляет около 4 млрд. лет.
Туннельный эффект позволяет достать то, что прочно удерживается за потенциальными барьерами. Именно прохождением частиц сквозь этот барьер объясняются ионизация атомов в сильном электрическом поле и вырывание электронов из металла под действием электрического поля. Однако чем больше ширина и высота потенциального барьера, тем меньше вероятность прохождения через него.
Именно благодаря туннельному эффекту работают полупроводниковые диоды Шотки, в которых электрический ток в десятки ампер успешно протекает через тонкий слой диэлектрика, разделяющий полупроводниковый и металлический электроды данного квантового прибора. Причем, как и положено диоду, прибор этот пропускает ток только в одну сторону — туда, где энергия зарядов меньше.
Полное подобие
Мы привыкли к тому, что практически каждый предмет индивидуален и хоть чем-то отличается от подобного ему. А вот про элементарные частицы этого сказать нельзя, и разные электроны (как и любые однотипные элементарные частицы) обладают той удивительной особенностью, что ничем друг от друга не отличаются. Системы, состоящие из одинаковых (тождественных) частиц, обладают в квантовой механике особыми свойствами. Эти свойства следуют из так называемого принципа неразличимости тождественных частиц. Представим себе, что мы поменяли местами два электрона, переставив один на место другого. Поскольку электроны абсолютно тождественны, такая перестановка не приведет ни к каким изменениям и не сможет быть обнаружена экспериментально. Это приводит к специфическому обменному взаимодействию, благодаря которому возникают химические связи в молекулах и кристаллах.
Идентичность атомов нашего светила и атомов, образующих похожую звезду, находящуюся на расстоянии в миллиарды световых лет от Земли, позволяет астрономам делать выводы об устройстве Вселенной. Более того, физики сегодня исходят не только из того, что в разных точках пространства действуют одни и те же законы, но и полагают, что за последние 10 млрд. лет электроны (да и весь остальной микромир) были неизменными и тождественными современным.
Даже точка может вращаться
Итак, построение квантовой теории началось с работы Планка, выдвинувшего гипотезу о существовании дискретных уровней энергии в рамках классического подхода. В процессе развития квантовой механики возникло уравнение Шредингера, из решения которого дискретные значения энергии получаются автоматически. Однако экспериментальное определение уровней энергии атомов показало, что полного совпадения с предсказаниями теории нет. Все уровни, кроме основного, расщеплены на ряд очень близких подуровней.
Объяснить это расхождение теории с опытом удалось только с помощью предположения, сделанного Джорджем Уленбеком и Сэмюэлем Гаудсмитом в 1925 году. Они решили, что электрон, как и большинство других элементарных частиц, обладает дополнительной внутренней степенью свободы, названной спином. Наличие спина у квантовой частицы означает, что в некотором отношении она подобна маленькому вращающемуся волчку. Спин может принимать только целые и полуцелые значения.
Все квантовые частицы делятся на два вида — фермионы и бозоны, в зависимости от их спина. Фермионами называются частицы, имеющие полуцелое значение спина. Для этих частиц справедлив принцип, открытый Вольфгангом Паули в 1925 году, согласно которому две одинаковые (тождественные) частицы с полуцелым спином не могут находиться в одном и том же квантовом состоянии. Бозонами называются частицы с целым спином. Принцип Паули на них не распространяется: в одном и том же состоянии может находиться любое число частиц. Самыми известными фермионами являются электроны, а бозонами — фотоны. Особенно резко отличаются друг от друга низшие энергетические уровни у систем бозонов и фермионов. Фермионы располагаются ровно по два на каждом энергетическом уровне — один спином вверх, другой вниз. А вот бозоны, напротив, могут все вместе расположиться на одном-единственном нижнем уровне. Именно это явление приводит к сверхпроводимости и сверхтекучести.
Эффект запутывания и ЭПР-парадокс
В процессе становления квантовой картины мира большую роль сыграли не только реальные данные, но и умозрительные эксперименты. Согласно предложенному в 1935 году Эйнштейном, Подольским и Розеном опыту, проводя наблюдения за одной из двух взаимодействовавших частиц, экспериментатор мгновенно изменяет параметры другой, уже далеко отлетевшей частицы. Получается, что квантовая система в процессе разделения сохраняет некую связь (эффект запутывания). Парадокс Эйнштейна—Подольского—Розена, или ЭПР, связан с принципиальной «квантовой нелокальностью».
Окончательное разрешение этого «парадокса» произошло только в 1964 году, когда Джон Белл рассмотрел пару запутанных квантовых частиц, бывших в контакте, а затем удалившихся друг от друга так, что их взаимовлияние стало невозможно. Он показал, что эти частицы проявляют себя столь взаимосогласованно, что это явление не может быть объяснено с точки зрения классической теории. Эксперименты с фотонами и другими частицами многократно показали наличие этой согласованности, тем самым подтвердив правильность квантовой механики и нелокальность пси-функции для системы из нескольких частиц.
Квантовый факс и ксерокс
Одним из важных выводов квантовой теории является теорема о неосуществимости копировании неизвестного квантового состояния. Согласно этой теореме невозможно, получив полную информацию о неизвестном квантовом объекте, создать второй, точно такой же, объект, не разрушив первый. Это утверждение, которое строго доказывается в квантовой механике, можно назвать парадоксом квантовых близнецов. Запрещая создание двойников, квантовая механика не запрещает создание точной копии с одновременным уничтожением оригинала — то есть телепортацию.
Слово «телепортация» совсем недавно перешло из фантастики в науку. Обычно полагают, что переместить какой-то объект или даже человека — значит переместить все частицы, из которых он состоит. Но поскольку элементарные частицы неотличимы друг от друга, их можно не перемещать, а «собрать» телепортируемый объект из новых частиц на основе полученной информации.
Следовательно, телепортация объекта есть считывание квантового состояния частиц и воссоздание этого состояния на удаленном расстоянии. Правда, согласно квантовой механике, как только будет считана вся нужная информация, объект исчезнет и снова появится на свет только после квантовой сборки.
Современному научному значению слова «телепортация» соответствует следующая процедура: объект дезинтегрируется (разрушается его квантовое состояние) в одном месте, а в другом месте возникает его совершенная копия. Причем объект или его полное описание в ходе телепортации никогда не находится между этими двумя местами. Обратите внимание, что «дезинтеграция» квантового состояния является необходимым условием согласно теореме о запрете на клонирование.
В силу принципа неопределенности, чем больше получено информации о некоем объекте, тем больше искажений вносится в этот объект — и так до тех пор, пока исходное состояние не будет разрушено полностью. И даже полностью разрушив исследуемый объект, мы все равно не получим полной картины его исходного квантового состояния. Это звучит как возражение против телепортации: если для создания точной копии из объекта невозможно извлечь достаточно информации, то точная копия не может быть создана. Однако шестеро ученых из группы Чарлза Беннета, нашли возможность обойти это затруднение, используя знаменитый ЭПР-эффект.
Практика телепортации
Вопрос о квантовой телепортации впервые был поставлен в 1993 году группой Чарлза Беннета, которая, используя запутанные состояния, показала, что при присоединении третьей частицы к одной из запутанных частиц можно передавать ее свойства другой удаленной частице. Экспериментальная реализация ЭПР-канала была осуществлена в работах двух групп исследователей — австрийской, из Университета в Инсбруке, возглавляемой Антоном Цойлингером, и итальянской, из Университета в Риме под руководством Франческо Де Мартини. Опыты группы Цойлингера и де Мартини доказали выполнимость принципов ЭПР на практике при передаче по оптическим кабелям состояний поляризации между двумя фотонами посредством третьего на расстоянии до 10 км.
Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами — электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более долгоживущей. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды. Телепортация может обеспечить надежную передачу и хранение данных на фоне мощных помех, когда все другие способы оказываются неэффективными. Возможно, в будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети.
Квантовая механика описывает элементарные частицы, движущиеся со скоростями, много меньшими скорости света. Квантовая теория поля описывает процессы с участием частиц, движущихся со скоростями, близкими к скорости света. И то, и другое в совокупности составляет квантовую теорию, описывающую движение, взаимодействие, рождение и уничтожение элементарных частиц.
Преемственность физики
Несмотря на совершенно новый взгляд на многие природные явления, квантовую механику никак нельзя расценивать как полное опровержение классической физики. Последняя может рассматриваться как предельный случай квантовой механики или как первое и очень грубое приближение к ней. Как подчеркивал Поль Дирак, соответствие между квантовой и классической теориями состоит не только в их предельном согласии. Соответствие заключается прежде всего в том, что математические операции двух теорий во многих случаях подчиняются одним и тем же законам и описываются одной математической структурой. Отличия заключаются лишь в представлении (реализации) этих структур конкретными математическими объектами.
Сегодня физики твердо верят в то, что наш мир един и познаваем. Все разнообразие природных явлений просто обязано описываться в рамках некоего единого универсального подхода. Другое дело, что человек пока еще не до конца сумел понять глубинную сущность законов природы и пределы познаваемости мира.
Однако большинство физиков убеждены в том, что, если идти по пути, указанном квантовой механикой и квантовой теорией поля, будет открыт тот самый свод законов и правил, который и правит нашим удивительно красивым миром.