Жрец древнего, забытого ныне культа, воздевающий к небу руки и приносящий хвалу небесному светилу за милость к живущему на Земле, — так ли он заблуждался? И заблуждался ли вообще? Солнце, безусловно, не могущественный бог, а только лишь плазменный шар, небольшая по космическим масштабам звезда. Если бы такая же по размерам звезда находилась на том же расстоянии, что и Сириус, мы бы не смогли даже увидеть ее свет. Но находящееся на расстоянии 150 миллионов километров от Земли Солнце — главный источник энергии для абсолютного большинства совершающихся на Земле процессов.
Не от милости всемогущего бога Солнце, но от лучистой энергии звезды зависят рост и развитие, да и само существование всего живущего на Земле.
Человек наблюдает за этой связью с незапамятных времен. Еще 4 000 лет назад жрецы знали периоды обращения нашей планеты вокруг светила, длительность года и дня, предсказывали затмения. Но закономерности иного масштаба выявились менее 400 лет назад — с появлением наблюдательных приборов. Оказалось, что ближайшая к нам звезда опутывает землю нитями гораздо более тонких и менее очевидных связей, но от этого не менее важных. Солнечные пятна, солнечные вспышки, факелы, протуберанцы и корональные лучи — эти явления влияют практически на все происходящие на Земле процессы, от атмосферных явлений до поведения человека. Как правило, их называют одним общим термином — солнечная активность.
Сложнейший и тончайшим образом настроенный механизм по имени Земля чутко отзывается на любое воздействие со стороны. Потоки космических лучей солнечного происхождения определяют скорость ионизации молекул воздуха в стратосфере и тропосфере, влияя тем самым на состояние облачности или прозрачности атмосферы. Часть энергии заряженных частиц передается в атмосферу. Это определяет распределение атмосферного давления, изменяя в результате количество осадков. Изменения атмосферной циркуляции приводит к изменению климата, что, в свою очередь, влияет на развитие растений.
Солнце влияет на растения не только косвенно, изменяя климат, но и прямо. Под действием потоков заряженных частиц, выбрасываемых из Солнца во время солнечных бурь, меняется магнитное поле Земли. Его изменение влияет непосредственно на клетки растений. Проницаемость клеточных мембран увеличивается, а эффективность обменных процессов с внешней средой растет. Значит, в это время растение получает возможность более интенсивно «забирать» нужные ему питательные вещества. В зависимости от солнечной активности изменяется и численность различных микроорганизмов, таких как аммонифицирующие и нитрифицирующие бактерии. Иначе говоря, солнечная активность сама «удобряет» почву. Изменение климата и как следствие роста растений, связанного с солнечной активностью, приводит также к циклическим изменениям популяций животных — как травоядных, так и хищников, поедающих их. В конечном итоге вся биосфера в той или иной степени оказывается зависимой от солнечной активности. Человек, как часть биосферы планеты, испытывает на себе влияние Солнца в той же мере, что и остальной природный мир. Но кроме изменения климата, урожая растений и популяций животных, связанных с явлениями, происходящими на Солнце, мы испытываем воздействия и иного рода. От солнечной активности зависит жизнедеятельность всей микрофлоры. И, следовательно, степень предрасположенности человека к тем или иным заболеваниям также подпадает под эту зависимость, но уже с учетом колебаний физико-химических реакций организма. Именно в годы максимальной солнечной активности холерные эпидемии, например, резко усиливаются и охватывают огромные пространства. При низкой же солнечной активности такого явления, как правило, не наблюдается.
Да, люди — не бактерии и не растения. Чем сложнее система, тем сильнее ее внутренние связи и тем более опосредованно влияют на нее воздействия такого рода. По-видимому, прямое влияние солнечной активности на человека не столь уж и велико. Не получили подтверждения предположения о ее влиянии на наше поведение. Связей активности с ростом числа преступлений, войнами и другими социальными встрясками также не выявилось. В таком сложном образовании, как человеческое общество, наивно было бы сводить все побуждения, движущие нами, к наличию или отсутствию солнечных пятен.
А с защитой от непосредственного губительного воздействия космического излучения и магнитосфера, и атмосфера Земли справляются довольно неплохо.
И все же человечеству приходится считаться с солнечной активностью. Главным образом это распространяется на техническую деятельность людей — магнитные бури и жесткое излучение, испускаемое Солнцем сегодня, когда наша безопасность зависит от электроники не меньше, чем от урожайности посевов тысячи лет назад, способны натворить немало бед.
Первыми от вспышек солнечной активности страдают спутники. Так, четырежды в течение 2000 года закрывались защитные крышки рентгеновского телескопа «Chandra», предохраняющие его сверхчувствительные элементы от воздействия солнечной радиации. В ноябре после очередной мощной вспышки в защитный режим был переведен и межпланетный зонд «Stardust». Большую опасность могут представлять вспышки и для работающих на орбите космонавтов. Для своевременного предупреждения экипажа на борту Международной космической станции установлен специальный детектор, подающий сигнал опасности в случае повышения на борту уровня радиации. Сильные вспышки могут оставить без радиосвязи целые регионы. Так случилось на Кольском полуострове в июле-августе прошлого года. А в 1989 году магнитная буря, вызванная солнечной активностью, привела к аварии на канадской гидроэлектростанции, когда более 6 миллионов человек в США и Канаде на 9 часов остались без электричества.
Последние наблюдения говорят о том, что текущий, 23-й по счету, цикл развивается по общему сценарию, типичному для нормальных циклов солнечной активности, когда наиболее значимые события приходятся на фазу роста, и особенно на фазу спада цикла. Это означает, что наибольшая вероятность ожидания мощных солнечных вспышек должна будет начаться со второй половины 2001 года и продолжиться до 2004-го. В этот же период велика вероятность нескольких очень больших магнитных бурь.
Стоит ли опасаться таких прогнозов? Безусловно, предупрежден — значит вооружен. Но в 1947 году, когда уровень солнечной активности втрое превышал нынешний, на Земле не произошло никаких глобальных катастроф. Видимо, природная система Земли способна выдерживать и не такие перегрузки.
Фотосфера — тот слой солнечной атмосферы, который мы видим в телескоп и воспринимаем глазом как поверхность, имеет температуру около 5 800оС. В период минимума солнечной активности поверхность фотосферы относительно спокойна. Все вихри термоядерных реакций, дающие звезде ее энергию, бушуют глубоко внутри. Но с началом нового цикла энергия всех этих внутренних процессов начинает прорываться наружу.
Увеличение солнечной активности является симптомом магнитных сдвигов под поверхностью Солнца. В этот период магнитное поле звезды теряет свою полярность. На ее поверхности начинают появляться пятна — относительно холодные области, температура которых не превышает 4 500оС . На фоне более горячей фотосферы они выглядят как темные. Магнитное поле пятен значительно выше окружающего их пространства. В той области, через которую проходят так называемые «перекрученные» силовые линии поля пятна, иногда возникают ситуации, при которых возможно «перезамыкание» магнитных полей. Здесь начинают активно развиваться солнечные вспышки — самое сильное проявление солнечной активности, влияющее на Землю. Они затрагивают всю толщу солнечной атмосферы. Их развитие сопровождается сложными движениями ионизованного газа, его свечением, ускорением частиц. Энергия большой солнечной вспышки достигает огромной величины,
сравнимой с количеством солнечной энергии, получаемой нашей планетой в течение целого года. Это приблизительно в 100 раз больше всей тепловой энергии, которую можно было бы получить при сжигании всех разведанных запасов нефти, газа и угля.
Сильные вспышки — весьма редкое явление, при котором энергия выделяется в верхней хромосфере или нижней короне, генерируя кратковременное электромагнитное излучение в довольно широком диапазоне длин волн — от жесткого рентгеновского излучения до радиоволн. Основная ее часть выделяется в виде кинетической энергии частиц, движущихся в короне и межпланетном пространстве со скоростями до 1 000 км/с, и энергии жесткого электромагнитного излучения. Вещество выбрасывается с поверхности Солнца со скоростью от 20 до 2 000 км/сек. Его масса оценивается в миллиарды тонн. А его энергия, распространяясь в космосе, менее чем за 4 минуты достигает Земли. Поток корпускулярных частиц, испускаемых Солнцем, со скоростью около 500 км/сек врезается в магнитное поле Земли, вызывая в нем возмущения и влияя на происходящие на нашей планете процессы.
Как раз сейчас Солнце находится почти на пике 11-летнего цикла своей активности, а потому исследования зонда Ulysses вызывают особый интерес. Что же представляет собой при «детальном рассмотрении» со столь близкого расстояния нынешний, 23-й, цикл солнечной активности?
Ее формальное начало приходится на май 1996 года. Начало фазы роста — на сентябрь 1997-го, когда на видимом диске Солнца появились первые две большие группы пятен, с которыми и связан первый значимый всплеск активности. Первый период гораздо более мощных солнечных вспышек был отмечен в начале ноября 1997 года, когда произошли мощные протонные выбросы. Большая гелиосферная буря в конце апреля — начале мая 1998-го была вызвана вспышечными событиями в двух группах пятен южного полушария Солнца. До конца 1998-го были отмечены еще два периода больших солнечных вспышек — в августе и в конце ноября. Такое хоть и бурное, но достаточно типичное развитие фазы роста солнечного цикла позволяло предположить активное поведение Солнца и в фазе максимума. Однако с конца ноября и до начала августа 1999-го ни одной мощной вспышки на Солнце не произошло.
Солнечная активность уже почти 400 лет не остается без человеческого внимания. Но с появлением космической техники эти исследования вышли на новый уровень. 11 лет назад, в октябре 1990-го, экипажем «Шаттла» Discovery в космос был выведен зонд Ulysses. Аппарат, предназначенный для изучения солнечной активности, «смотрит» на Солнце с необычного ракурса. Он вращается вокруг светила по эллиптической орбите, которая почти перпендикулярна плоскости солнечной системы. На зонде установлены магнитометры, детекторы космической пыли, гамма-вспышек, межзвездного газа и гравитационных волн.
В 1994-м с помощью аппаратуры, установленной на зонде Ulysses, была обнаружена резкая граница между относительно медленно движущимся солнечным ветром, исходящим из экваториальных областей Солнца, и быстрым ветром с полюсов. Кроме того, данные, полученные с аппарата, позволили установить, что после завершения периода максимальной активности у Солнца вновь появляются магнитные полюса, правда, меняясь местами — южный становится северным, и наоборот.
Мы не знаем, когда и как Галилео Галилей научился ослаблять яркий солнечный свет. Но одним из первых небесных светил, на которые он направил в 1610 году свою зрительную трубу, было Солнце. В 1613-м были опубликованы знаменитые письма о его открытиях, иллюстрированные изображениями того, что увидел Галилей. Он первым обнаружил на Солнце пятна.
С этого времени регистрация пятен то проводилась, то прекращалась, то возобновлялась вновь. В конце XIX столетия два астронома-наблюдателя — Г. Шперер в Германии и Е. Маундер в Англии — указали на тот факт, что в течение 70-летнего периода вплоть до 1716 года пятен на солнечном диске, по-видимому, было очень мало. К 1843 году после 20-летних наблюдений любитель астрономии Г. Швабе из Германии собрал достаточно много данных для того, чтобы показать, что число пятен на диске Солнца циклически меняется, достигая минимума примерно через каждые одиннадцать лет. Р. Вольф из Цюриха собрал все, какие только мог, данные о пятнах, систематизировал их, организовал регулярные наблюдения и предложил оценивать степень активности Солнца специальным индексом, определяющим меру его «запятненности». Этот индекс, впоследствии названный «числом Вольфа», начинает свой ряд с 1749 года. Нынешний цикл солнечной активности — 23-й по счету с момента начала наблюдений.
Самым наглядным проявлением влияния космических условий на жизнь растений является чередование толщины годичных колец деревьев. График зависимости образования годовых колец, на которую непосредственно влияют количество осадков и температура, очень хорошо накладывается на циклы солнечной активности.
Еще до открытия 11-летнего солнечного цикла английский астроном Гершель сопоставил собранные им почти за двести лет данные о солнечных пятнах с рыночными ценами на пшеницу. Связь оказалась очень простой и четкой — цены были тем меньше, чем выше была солнечная активность. Климат в это время становится более влажным, поэтому урожаи пшеницы — обильнее, а рыночные цены на нее — ниже.