Рис.1
Образование наледей и сосулек на теплой крыше (DE-VI):
1 - снег;
2 - вода;
3 - лед;
4 - поток тепла
Осадки в виде снега, находясь на кровле, не представляют собой какой-либо опасности. Однако если создаются условия для таяния снега под действием какого-либо источника тепла, он превращается в воду. Если у образовавшейся талой воды отсутствуют пути для быстрого ухода с кровли, при наступлении соответствующей отрицательной температуры она замерзает, превращаясь в лед. Поскольку условия для таяния (и скорость плавления) у льда и снега различны, при следующем кратковременном действии источника теплоты возможно не таяние, а, напротив, увеличение ледовой пробки. Такой механизм образования наледи может приводить к образованию сосулек длиной в десятки метров и весом в сотни килограмм.
Источниками тепла являются:
На сегодняшний день наиболее распространенный способ борьбы с образованием наледей - применение систем антиобледенения на основе греющих кабелей.
Системы антиобледенения на основе греющих кабелей
Рис.2
Применение антиобледенительной системы на основе греющих кабелей
Внедрение систем антиобледенения на основе греющих кабелей при условии правильного проектирования, учитывающего особенности конструкции кровли, позволяет полностью исключить образование наледи при сравнительно невысоких ценах и незначительном энергопотреблении и также обеспечить работоспособность системы организованного водостока в весенний и осенний периоды.
Рис.3
Монтаж греющих кабелей
Работа систем антиобледенения при температурах ниже -18 °...-20 °С, как правило, не нужна. Во-первых, при таких температурах не идет образование наледи по первому механизму и резко уменьшается количество влаги по второму. Во-вторых, при этих условиях количество выпадающих осадков в виде снега также уменьшается.
В-третьих, на таяние снега и отвод влаги по достаточно длинному пути нужны большие электрические мощности.
При установке системы надо иметь в виду, что проектировщик должен обеспечить появившейся в результате 'работы' системы воде свободный путь полного стока с кровли.
Рис.4
Пример обогрева ендовы.
1 - Зажим
2- Секция нагревательная
3 - Кронштейн
4 - Медная полоса
Существуют также границы мощностей греющей части систем, установленные на основании практики, несоблюдение которых приводит к неэффективному действию оборудования в указанном диапазоне температур, а значительное превышение последних приводит лишь к перерасходу электрической мощности без какого-либо улучшения работы системы.
К ним относятся:
Все вышесказанное позволяет сделать несколько общих выводов:
Типовые, конструктивные решения
Основные задачи при конструировании кровельных систем антиобледенения - сделать ее эффективной, сравнительно недорогой, и применить такие способы крепления, которые не повреждали бы весьма ответственные узлы кровли и не портили бы внешний вид здания. При этом узлы крепления должны быть надежными, долговечными, и не повреждающими оболочку греющих кабелей.
Одним из основных принципов конструирования узлов крепления является применение тех же материалов, что и для кровли, либо совместимых с ними.
Рис.4
Обогрев снегового кармана
На рис. 4,5,6 показаны примеры укладки греющих и распределительных кабелей на различных (наиболее распространенных) узлах скатных кровель. Прежде всего, они относятся к кровлям, крытым оцинкованным железом, медными листами и металлочерепицей.
Следует заметить, что для мягких кровель применяются специальные методы не повреждающего крепления греющих кабелей. На получивших широкое распространение лотках снегозадержания и снегоудаления весьма целесообразна укладка греющих кабелей в бетонную (или цементно-песчаную стяжку). Это, кроме предохранения кабеля от повреждений, значительно повышает эффективность нагрева за счет использования теплоаккумулирующих свойств бетона.
Рис.6
Обогрев водостока с подогреваемой воронкой
Требования безопасности
Основные требования предъявляются с точки зрения пожаро- и электробезопасности.
Для их удовлетворения необходимо выполнить несколько условий:
Греющие кабели основных производителей имеют все необходимые сертификаты и прошли многократную апробацию в составе систем антиобледенения.
Испытания и оценка эффективности
Испытания систем антиобледенения можно разделить на две группы: приемо-сдаточные и периодические.
Приемо-сдаточные испытания, как правило, начинаются с испытаний сопротивления изоляции греющих и распределительных кабелей. Проводится тестирование УЗО (или дифавтоматов). Составляются соответствующие протоколы с указанием конкретных значений. Наиболее информативными являются испытания на функционирование, в ходе которых проверяется эффективность работы системы.
Следует отметить, что системы антиобледенения не являются системами мгновенного действия. Они предназначены для работы в ждущем режиме, и включаются сразу при появлении осадков. Если система была включена не вначале сезона, и на кровле накопился слой снега, ей понадобится время от 6 часов до суток для его удаления.
Затруднения имеются при сдаче системы в теплое время года. При этом проверяется надлежащее функционирование управляющей аппаратуры, имитируются сигналы с датчиков, проверяется переход системы в режим включения нагрузки, отключения лотков, а затем и отключения водостоков.
Периодические испытания проводятся, как правило, в начале осени для проверки технического состояния системы и подготовки ее к работе. Прежде всего, проверяется сопротивление изоляции для определения поврежденных участков. Затем проверяется состояние аппаратуры, проводится ее пробное включение. После проверки настроек терморегуляторов производится рабочее включение системы, и она остается работать в ждущем режиме.
Гидрофобные композиции антиобледенения
Гидрофобные композиции антиобледенения не предотвращают образование льда, а обеспечивают быстрый сход вновь образуемого водного льда при повторяющихся циклах замерзания-оттаивания, не давая ему формироваться в большие ледяные сосульки и натеки.
Такие гидрофобные композиции наносятся на металл, бетон и иные основания вручную, кистью, валиком или с помощью распылителей на чистые, сухие и не пыльные поверхности, свободные от ржавчины, масел, жира и т.п. Отвердение композиций происходит при температурах выше +5 0С.
По данным Международной Академии Холода (МАХ) сила сцепления водного льда с материалами кровли зданий весьма велика (сталь 3 - более 0,16 МПа, бетон - более 0,22 МПа), при испытаниях на отрыв разрушалась внутренняя структура льда, а его остатки прочно сохранялись на поверхности материалов. В то же время адгезионная прочность льда с покрытием из композиции антиобледенения практически полностью отсутствует и составляет менее 0,22 МПа.
Покрытия, препятствующие обледенению, являются гидроизоляционными, антикоррозийными, экологически чистыми, обладают высокой прочностью и эластичностью, сохраняют высокие физико-механические свойства в широком диапазоне температур, являются стойкими к УФ-облучению и атмосферным осадкам.