0,6 ангстрема. Таков текущий рекорд разрешения в электронной микроскопии. Группа американских учёных получила прекрасные изображения отдельных атомов лантана, присоединённых к слоям нитрида кремния. За кадром остались титанические усилия, которые потребовались для сотворения этого чуда.
В 1959 году Ричард Фейнман, всемирно известный американский физик, первым предсказал появление нанотехнологий и, так сказать, нанонауки.
Тогда он заявил, что эта науку ждёт взлёт, когда разрешение электронных микроскопов вырастет в сто раз. Этот взлёт потребовал 45 лет.
Рекорд поставила научная группа электронной микроскопии (Electron Microscopy Group Condensed Matter Sciences Division) американской национальной лаборатории в Окридже (Oak Ridge National Laboratory ORNL).
Собственно, планка была взята в прошлом году, и коротко мы об этом говорили. Правда, тогда учёные разглядывали другие элементы. И с тех пор провели много новых опытов. Неважно. Интересно другое: мы раскопали подробности "закулисья" рекордного достижения. Хотите узнать чего стоят эти 0,6 ангстрема?
| ||
Но то, что они сделали – удивительно. Они взяли микроскопический кусочек нитрида кремния, покрыли его атомарным слоем лантана, ухитрились сделать разрез этого "пирога" и отсняли его с помощью своего зоркого инструмента.
Разрешение этого изображения достигло 0,6 ангстрема. 1 ангстрем равен 1 десятимиллионной доле миллиметра.
Инструмент – это так называемый Z-контрастный сканирующий трансмиссионный электронный микроскоп с коррекцией аберрации (уф, больше выговаривать это не будем), установленный с полной развязкой от вибраций, акустических и магнитных полей в сравнительно недавно возведённом здании лаборатории передовой микроскопии ORNL (Advanced Microscopy Laboratory).
Лаборатория передовой микроскопии ORNL (иллюстрация ORNL). |
"Z-контрастный" означает, что данный аппарат реагирует на атомное число элемента, ярко выделяя тяжёлые атомы на фоне лёгких.
Первый Z-контрастный электронный микроскоп учёные, инженеры и промышленники разрабатывали ещё в 1988 году, при непосредственном участии Пенникука, кстати. В 2001 году электронная микроскопия взяла рубеж разрешения в 0,8 ангстрема. Для шага к 0,6 ангстрема физикам пришлось прыгнуть выше головы.
Резиновые подушки, воздуховоды с двойными стенками и изоляцией – меры против шумов и вибраций (иллюстрация ORNL). |
Там приняты все меры, чтобы свести проникновение внешних магнитных полей до уровня ниже 0,3 миллигаусса, то есть до уровня в тысячи раз меньшего, чем сила магнитного поля Земли, способного разве что только отклонить стрелку компаса, висящую на игле.
| ||
Да что там пылинка. Можно представить, что форточка, открытая где-нибудь неподалёку от прибора или чихнувший сотрудник способны увести настройки прочь – целимся-то мы в отдельные атомы! Потому микроскоп управляется дистанционно из диспетчерской.
Все эти ухищрения позволили группе Пенникука за последнее время сделать массу открытий в поведении сверхпроводников и конструкционных материалов.
Только один пример: разглядывая буквально атом за атомом, как разные элементы выстраиваются друг рядом с другом, учёные раскрыли секрет ломкости лопаток турбины авиадвигателей, покрытых каким-то хитрым стойким составом.
Главное – не уронить: привезли и монтировали прибор по частям (иллюстрация ORNL). |
Сколько стране могут дать новые материалы и вообще – понимание взаимодействия веществ – оценивайте сами.
Статья о науки и техники получена: Membrana.ru