По удельной мощности и быстроте действия мышцы человека превосходят традиционные электрические или пневматические приводы для роботов. В попытке найти ненадёжным узлам замену учёные придумывают самые необычные типы искусственных мышц.
Чем плохи электромоторы или пневматические (гидравлические) цилиндры в качестве приводов манипуляторов? В них есть подвижные детали, а значит трение и износ.
Очень заманчиво заменить такие приводы чем-то похожим на живую мышцу.
Она ведь только сокращается и расслабляется. С виду – просто. Но ничего более надёжного, бесшумного и долговечного для машин и пожелать нельзя.
Да и людям подобные синтетические мышцы пригодились бы: только представьте лёгкий и бесшумный экзоскелет, эффективный протез или даже мышцу-имплантат.
Увы, эффективных искусственных мышц учёные пока не придумали. Те, что есть по скорости работы уступают живым раз в 100. Но хотя бы в силе превосходят? Если бы. Особой мощности создателям таких мускулов достичь пока не удалось.
Весной этого года прошло первое в мире соревнование по армрестлингу между человеком и искусственными мышцами (трёх типов), закончившееся победой человечества в лице 17-летней девушки.
А там ведь на сцену "выходили" самые свежие разработки в этой сфере: разного вида и принципа действия электроактивные полимеры (электропроводящие и диэлектрики) и даже один полимер-гель, активируемый впрыскиванием кислоты.
| ||
Синтетические мышцы могут быть хоть в тысячу раз быстрее человеческих мускулов, сообщают авторы новой работы. Да ещё с очень низким энергопотреблением и "бонусом" в виде простоты конструкции.
Отталкивались Йип и его коллеги от уже известных исследований в области электроактивных полимеров.
Как поступали учёные раньше? Брали электропроводные полимеры, добавляли к ним ионы, которые прикреплялись к цепочке, создавая в этом месте небольшой изгиб – солитон.
Теперь, если к нужным местам полимера подводить электрический заряд – солитон будет перемещаться, заставляя цепь изгибаться. Из множества таких цепей тогда можно составить мышцу, реагирующую сокращением на подачу электрического напряжения.
Один из вариантов синтетической мышцы текущего образца. Солитон (отмечен красными и синими полосами) проходит вдоль полимерной цепи (голубой – водород, жёлтый углерод). "Управляет" солитоном ион натрия (красная точка) (иллюстрация с сайта web.mit.edu). |
Теперь в MIT вычислили, что добавлять ионы вовсе не нужно. Теоретически, направляя на электропроводную полимерную цепь свет специфической частоты, можно сформировать солитон и управлять его перемещением вдоль цепи.
А без дополнительного веса ионов подобные полимеры могут согнуться или разогнуться намного быстрее.
Мышца нового типа. Электрически нейтральная полимерная цепь (зелёный цвет) находится в согнутом состоянии. Облучение с правильно подобранной частотой создаёт положительные заряды (красный цвет) в ограниченной области. Заряды меняют химическую связь между звеньями цепи, распрямляя её на этом участке. Перемещение луча позволяет управлять волокном (иллюстрация с сайта web.mit.edu). |
Работа ещё не завершена. Но, может быть, именно синтетические мышцы, активируемые светом, позволят роботам стать более похожими на людей. А некоторых людей – на роботов.
Статья о науки и техники получена: Membrana.ru